点と直線の距離を利用した三角形の面積の求め方

三角形の3点の座標がわかっていると、以下の公式により三角形の面積を求めることができます。

3点がわかっている場合の三角形の面積を求める公式

3点\(O(0,0),A(x_1,y_1),B(x_2,y_2)\)
を頂点とする三角形の面積Sは

$$S = \frac{1}{2}|x_1y_2 - x_2y_1|$$

3点がわかっている場合の三角形の面積を求める公式の証明

3点を\(O(0,0),A(x_1,y_1),B(x_2,y_2)\)として、
まず直線ABの方程式を求めます。

\(y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)\)

両辺に\(x_2 - x_1\)をかけて

\((y_2 - y_1)(x - x_1) - (x_2 - x_1)(y - y_1) = 0\)

整理して

\((y_2 - y_1)x - (x_2 - x_1)y + x_2y_1 - x_1y_2 = 0\)

点O(0,0)とこの直線の距離をhとして、

\(h = \frac{|x_2y_1 - x_1y_2|}{\sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}}\)

\(h = \frac{|x_1y_2 - x_2y_1|}{AB}\)

よって、

\(S = \frac{1}{2}AB \cdot h = \frac{1}{2}AB \cdot \frac{|x_1y_2 - x_2y_1|}{AB}\)

\(S = \frac{1}{2}|x_1y_2 - x_2y_1|\)

この公式を使う時は、一つの頂点を原点に戻して使います。

初版:2021/7/5

このエントリーをはてなブックマークに追加