分数関数について

xについての分数式で表された関数を、xの分数関数という。
分数関数の定義域は、分母を0にするxの直を除いた実数全体。

$y = \dfrac{k}{x}(k \ne 0)$ - ①

このグラフは、
k > 0なら、第1,第3象限
k < 0なら、第2,第4象限にある。

原点に関して、グラフ上の任意の点$P(a,b)$と対称な点$Q(-a,-b)$も①を満たすから、
点Qは①のグラフ上にあるので、
①のグラフは原点に関して対称です。

また、漸近線はx軸とy軸で互いに直行しているので、①は直角双曲線になります。

$y = \dfrac{k}{x - p} + q(k \ne 0)$

$y = \dfrac{k}{x}$のグラフをx軸方向にp,y軸方向にqだけ並行移動した直角双曲線で、
漸近線は2直線$x = p$,と$y = q$で、定義域は$x \ne p$,値域は$y \ne q$です

初版:2022/2/9

このエントリーをはてなブックマークに追加